
Unity AssetBundles for VaM 1.xx
MacGruber’s Tutorial Series

This tutorial gives you a quick introduction on how to export assets from Unity into VaM.

Overview
Install the correct Unity version .. 1

Setup your Unity project ... 2

Getting some Assets ... 5

Adding collision ... 6

Creating a material variation .. 7

Creating Prefabs .. 8

Creating the AssetBundle .. 9

Using VaMExporter ... 10

Loading in VaM ... 11

Extracting assets from AssetBundles .. 12

License considerations .. 12

Included Tools: EditorOnly, ProBuilder and ProGrid .. 13

Install the correct Unity version
Note that you can’t just install the newest version of Unity, you will run into trouble. The reason is that VaM 1.xx is

still being build with an old Unity version back from the year 2018. It can’t load anything produced with newer

versions of Unity. Assuming you want to make AssetBundles for VaM 1.xx versions, you will need Unity 2018.1.9 or

older. At some point VaM will likely switch to a newer Unity version, though, likely for VaM 2.xx.

I recommend installing Unity Hub, which allows you to have multiple versions of Unity installed in parallel. You might

need that once VaM 2.xx is released. It’s also a nice tool to manage your Unity projects. Once you got Unity Hub, you

can install Unity 2018.1.9f2 with the unityhub-Link below:

• Download Unity Hub: https://unity3d.com/get-unity/update

• Install Unity 2018.1.9f2: unityhub://2018.1.9f2/a6cc294b73ee

• Alternative without Unity Hub, not recommended: https://unity3d.com/get-unity/download/archive

When installing Unity you don’t need any of the optional stuff. I recommend to install the documentation, though.

There is online documentation, but the servers are insanely slow. Having the documentation local is just way faster.

https://unity3d.com/get-unity/update
unityhub://2018.1.9f2/a6cc294b73ee
https://unity3d.com/get-unity/download/archive

Setup your Unity project
Luckily, I already got a ready-to-go Unity project for you. You just need to download the ZIP and extract it to some

nice place on your hard drive.

• UnityAssetBundles-Project-20200307.zip (via MEGA)

This already got a bit of setup done to make the produced assets compatible with VaM VR. Additionally, it includes a

number of tools you will find helpful:

• AssetBundleBrowser (by Unity)

• ProBuilder + ProGrids (by ProCore)

• VaMExporter (by MacGruber)

• EditorOnly (by MacGruber)

Open the project from Unity Hub by adding the project folder to the Projects tab. Assuming you have not used Unity

before, the project will look like this when you open it for the first time:

https://mega.nz/#!Wnh2mCoR!7QwNGvqO4i0GM7iI-PHCH6JDm3E-dFT6uCQ8UFHvWeY

First, we are going to add some tools to your UI layout, so you can access them easily.

Go to Window → AssetBundle Browser, which opens a new window. Take the tab labeled “AssetBundles” that is in

the upper left corner of that window and drag&drop it to dock the window anywhere in the main window. I just put

it right of the Project / Console window. You might want to arrange things differently at a later point once you know

what you need to do, but let’s just stick with this for the moment:

Next do the same with Tools → VaMExporter, this one I docked in the lower part of the Inspector window. Also, I

resized the windows slightly and pulled the little slider at the bottom of the Project window all the way to the left. It

controls the icon size and I hate large icons You screen should look about like this now:

Getting some Assets
For the purpose of this tutorial I have included two nice assets with the project, a sofa and a matching ottoman.

These are a based on these two free Sketchfab assets by Visja Filip Rumin: Old Sofa and Old Leather Ottoman. Both

are under CC-BY-4.0 license, which made it possible to include them in this tutorial.

I made a number of modifications. I won’t go into too much detail here as this is not VaM specific and there should

be like a million tutorials around.

• I my opinion the legs of the sofa were not really matching the ones from the ottoman. So, I used Blender to

remove the sofa legs and replace them with the much nicer ottoman legs.

• I merged the two separate meshes of the ottoman into a single mesh with two materials. That way we only

need a single Unity GameObject.

• When importing the FBX or OBJ files into Unity, it often can’t import the materials correctly, textures are not

assigned. That happens often, but it’s a quick fix. In the Project window find the FBX/OBJ and unfold it. There

select all the materials and click “Extract From Prefab” from the right-mouse-button menu. That allows you

to modify the materials. Using the Unity Standard shader is the way to go in most cases. Just assign the

textures. Afterwards I renamed the materials to make clearer what is what and tuned the color a bit darker

from the original brown.

• To make rendering more efficient, I made the sofa legs use the ottoman leg material, as they are identical

now. Since the leg textures were essentially uniform black only anyway (LEGS_albedo and LEGS_metallic),

there is no point assigning them. Saves a bit of memory and renders faster.

To see the two assets in Unity just drag&drop the Sofa.prefab and Ottoman.prefab from the Tutorial folder into the

Hierarchy window. Since both assets spawn at 0/0/0, I moved the ottoman a bit so they are not inside each other:

https://sketchfab.com/
https://sketchfab.com/3d-models/old-sofa-free-90be7242f24749c3a8e0b0a69c616fc1
https://sketchfab.com/3d-models/old-leather-ottoman-free-439b506e2e4f4f85a1a261835d486ead
https://creativecommons.org/licenses/by/4.0/
https://www.blender.org/

Adding collision
Later in VaM we will want to place a character on our assets, obviously. To make sure our character does not just

sink into nothing, we need collision.

Select the sofa and scroll to the bottom of the Inspector window, click the Add Component button. Search for Mesh

Collider and add one. Then click Apply at the top, to save the changes into the prefab.

Do the same for the ottoman.

Theoretically we could also use a different mesh for the collision than the one we are using for rendering. A mesh

with fewer polygons would certainly be faster, and physics is a bottleneck of VaM. Also, at least when dealing with

VaM, it can be helpful to have the collision mesh slightly smaller (like 0.5cm) than the visual mesh. This allows the

character to sink in slightly instead of hovering over the asset. However, we are not going fancy today.

Creating a material variation
Let’s create a brown version of our assets. Since we will use the same textures and meshes, this won’t make the

resulting AssetBundle much larger. It’s just a nice way of offering a few options to your users without blowing up the

package size.

First, I’m going to rename the GameObjects in the scene. This will be the name of the prefab later. While not strictly

necessary, it’s just less confusing if name of the prefab and name of the contained GameObject match. Let’s name

these Sofa-Brown and Ottoman-Brown.

Second, we want to change the color. Since prefabs just contain references to other things like materials, textures

and meshes, we need to duplicate the materials. To find the correct material file, you can just click it in the Inspector

window and the Project window will highlight the correct file reference:

To duplicate a material, we select it in the Project window and press Ctrl+D. Since I only want to change the leather

material, it is enough to copy only the Main material. After duplicating I rename the file to Main-Brown. This did just

copy the material, but our ottoman is still referencing the original material. So, select the ottoman again and

drag&drop the Main-Brown material onto the material slot in the Inspector window. Do the same for the sofa,

duplicate the Main material, rename it and assign to the material slot.

Last but not least we we change the new material to our liking. I just set the albedo color to white, so the get the

original color from the brown albedo texture:

Creating Prefabs
When loading this later in VaM, we want our assets to appear right where the CustomUnityAsset atom is located.

Here in Unity that position is 0/0/0. Therefore, we need to position our asset in the scene in the same way we want

it located later in VaM in relation to 0/0/0. It can help sometimes to add a little helper object in the scene and

position it at 0/0/0 to figure out where something needs to go. In this particular case the mesh is already nicely

aligned, we can just move the ottoman back to 0/0/0. No worries about both being inside of each other. Inside VaM

these will be separate objects.

Just as you can drag&drop things from the Project window into the scene, you can also drag&drop them back. So,

select the Sofa-Brown GameObject in the Hierarchy window and drag&drop it back into a folder in the Project

window. This will create a so-called prefab object, which would also contain all the children of the object, if there

were any. Do the same for the Ottoman-Brown.

Creating the AssetBundle
Now that we got prefabs for our assets, let’s create our AssetBundle. Make sure the Configure tab is selected in the

AssetBundles window. Then select the 4 prefabs in the Project window and drag&drop them into the AssetBundles

window. Unity will ask if you want to create a single combined bundle or separate bundles for each prefab. We want

a single bundle. As per convention I recommend to name the AssetBundle with your creator name, an underscore

and then the actual bundle name. So, I’m going with MacGruber_Sofa. Note that Unity will automatically lower case

your filename. We will fix that in a minute. This should look like this now, our 4 prefabs and a list of all the

dependencies in form of materials, textures and meshes:

Now switch to the Build tab of the AssetBundles window:

The default settings are fine here. However, a word on the Compression setting:

• Standard Compression (LZMA) provides the smallest file size, but VaM will have to load the entire bundle

into memory, which is slow.

• Chunk Based Compression (LZ4) has a larger file size, but can be loaded WAY faster. If you want only a few

selected assets out of a huge bundle, only the actually needed parts need to be loaded and decompressed.

• No Compression gives you obviously a large file size, but the AssetBundle creation process is much faster.

Loading is also faster, at least when using an SSD. Use this if you want to iterate quickly between Unity and

VaM and don’t care about file size as you not actually want to share your stuff, yet.

Since this a selection of prefabs and you will only place one or two of them in your scene, LZ4 compression is a good

choice. Now click Build, which will take a moment. Unity is done after the progress bar dialogs are gone and the little

circling icon in the lower right corner is gone as well:

Using VaMExporter
This is just a little productivity tool I made. Usually you would have to go to the AssetBundle output folder now, find

your AssetBundle, fix the filename (since it was made lowercase), give it the proper file extension and then copy it to

the correct VaM directory. However, since I’m, like most programmers, as absolutely lazy person I made this little

tool.

Go to the VaMExporter window. For first time use you will have to tell it where to find its files:

• SourceFolder should default to the correct path, assuming you did not change the Output Path setting in the

AssetBundles window. That would be AssetBundles/StandaloneWindows inside your Unity project folder.

• TargetFolder you have to set. It’s the folder where you want the AssetBundles inside your VaM install

directory. I recommend Custom\Assets\YOURNAME, so that would be Custom\Assets\MacGruber for me.

Next to the [0] field enter the name of the AssetBundle. It has to be identical to the name we used earlier, but you

can use uppercase letters here. Also you can add your desired file extension here. For assets like this one I

recommend .assetbundle, while VaM would also understand .scene. Certain scripts might use their own extensions,

e.g. my Life plugin uses .audiobundle. Anyway, we named the bundle macgruber_sofa earlier, so I’m entering

MacGruber_sofa.assetbundle.

You can enter names for multiple bundles here, temporarily disable some entries, etc. However, we only got one

bundle to worry about now, so you can just press Copy Build AssetBundles. This will create a log entry in the console.

If you got an error there that is likely because the file was write protected. That might be the case when VaM still got

a hold on the file because it is used in an opened scene. If that is the case, temporarily clear the CustomUnityAsset in

question or load a different scene.

Loading in VaM
Add a CustomUnityAsset atom to your scene, select the AssetBundle just created and select the desired prefab from

it. In this scene we got two CustomUnityAsset’s each referencing to the same AssetBundle. No worries, VaM will only

load it once.

Extracting assets from AssetBundles
So far, this tutorial covered the process of creating AssetBundles with Unity. However, you can also extract assets

again from an AssetBundle to reimport them back into Unity. Within limitations at least.

There are a number of tools for this, the only one that kind of worked for me is uTinyRipper. Its easy to use,

essentially drag&drop your AssetBundle from WindowsExplorer into the uTinyRipper window.

Press Export and it will let you choose a folder where to put the extracted files. You likely want them somewhere

inside the Assets folder of your VaMAssetExport Unity project. Once the export is done, Unity will automatically

detect and import the assets. Note that Unity will complain about broken prefab references with some warnings:

However, you can fix that by dragging each of the reimported prefabs into a scene and back out again onto the same

prefab. Unity will ask if you want to replace the prefab, click Replace anyway and you are done.

License considerations
Now that you know how to export Unity assets and even import them again, you will start your hunt for assets. The

most obvious location is the Unity Asset Store. However, if you want to share your assets with the VaM community,

you will have to consider the whether you are allowed to do so. For example, the Unity Asset Store license of course

allows you to build AssetBundles, but it requires you to build an entire game around those assets. As sad as it is,

sharing just some ready asset from the store will likely not be allowed. Wherever you find your assets, you will

have to check if you are actually allowed to do what you want to do. Most commercial assets do not allow sharing

in the way required for a sandbox game like VaM. Of course, you could always contact the author and try to make a

deal.

https://github.com/mafaca/UtinyRipper
https://assetstore.unity.com/

Included Tools: EditorOnly, ProBuilder and ProGrid
As mentioned in the beginning, the ready-to-go project made for this tutorial got some helpful tools included:

EditorOnly
This is a simple script you can put on GameObjects in your

scene or prefab inside the Unity editor. Adding this script

will cause that particular GameObject and all of its children

to not be included when building an AssetBundle.

For example, you might want to have some light sources,

cameras or other helpful things in your scene that you don’t

want to export into VaM. Instead of removing or

deactivating them by hand everytime your want to export,

you just put this script on them.

ProBuilder
ProBuilder is a simple modeling tool. Mainly it is intended for

quick prototyping. However, I build the entire SecretRoom

environment with this. Especially the auto-stitch feature for

texturing is awesome. There are some bugs you might

encounter, though, since this is a rather old version to be still

compatible with Unity 2018.1.9.

Open it via Tools → ProBuilder → ProBuilder Window and dock the window somewhere.

There is a nice to the point video tutorial here, which covers all the essentials in just 5 minutes. No worries about the

UI looking completely different, they are just using ProBuilder in icon mode instead of the default text mode. Also,

they are using Unity in dark mode, which is not available in the free Unity version.

Once you modeled your mesh and textured it, you can use the Export function (with Export Format set to Asset) to

produce a prefab out of it. If needed, this can also be converted back again to ProBuilder by using the ProBuilderize

button.

ProGrid
This is an extension to ProBuilder, allowing you to snap things to a grid when moving for

precise alignment. When building SecretRoom I used a 1cm grid. Usage should be self-

explanatory; the buttons have tooltips.

https://www.youtube.com/watch?v=Ta3HkV_qHTc

