
 1 / 11

Magic Light Show Developer's Note

"Magic Light Show" is not so much a stage for a light show as it is a development tool for light

shows. Its core is a lighting control program written in VAM-Scripter based on the "__MainScript"

atom. This program allows users to achieve flexible control of one or multiple lighting groups,

or even individual lights within a lighting group, by writing "configuration text" and parsing and

executing it, thus achieving complex and variable lighting effects. This greatly facilitates the

design and choreography of light show stages.

Basic concepts:

1. Lighting: The lighting used in the light show performance is not a real light source, but rather

volume light developed by PluginIdea. Using real light sources would be too taxing on the

system, as hundreds of lights are needed.

2. Lighting group: Typically refers to a group of highly coordinated lights that belong to the

same "group control parent atom" ("_Dome/CX_CC", where X is a sequential number starting

from 0). All the lights in a lighting group share a "volume light" plugin, with consistent

properties such as light cone angle, brightness, and color.

3. Individual light: Each specific light within a lighting group. Its atomic name is "_Dome/CX_LY"

(where X and Y are sequential numbers starting from 0), and its parent atom is

"_Dome/CX_CC". In the naming convention for lights, "CX" indicates the lighting group it

belongs to, and "LY" indicates the specific light. The tilt (Pitch) rotation, azimuth (Yaw)

rotation, and on/off status of the light can be controlled independently, while other attributes

 2 / 11

follow the lighting group.

Description of attributes and parameters:

Objects Attributes
Parameters

delay duration speed mode WU sVal eVal CD vuml

Light

each

single

light

Pitch Float Float Float
Int

0,1,2,3
Float

Float

0~180

Float

0~180
Float String

Yaw Float Float Float
Int

0,1,2,3
Float

Float

-180~180

Float

-180~180
Float String

YawAlt Float Float Float
Int

0,1,2,3
Float

Float

-90~90

Float

-90~90
Float String

Switch Float Ignore Ignore
Int

0,1,2,3
Float

Int

0,1

Int

0,1
Float String

Circle

each

group

of

lights

Intensity Float Float Float
Int

0,1,2,3
Float

Float

0~3

Float

0~3
Float String

Angle Float Float Float
Int

0,1,2,3
Float

Float

0~50

Float

0~50
Float String

Radius Float Float Float
Int

0,1,2,3
Float

Float

0~0.1

Float

0~0.1
Float String

FadeEnd Float Float Float
Int

0,1,2,3
Float

Float

0~60

Float

0~60
Float String

Color

(RGB)
Float Float Float

Int

0,1,2,3
Float

Float X 3

0~255

Float X 3

0~255
Float String

Color

(HSL)
Float Float Float

Int

0,1,2,3
Float

Float X 3

0~360

0~100

0~100

Float X 3

0~360

0~100

0~100

Float String

CParm1

CParm2

CParm3

(RGB)

Float Float Float
Int

0,1,2,3
Float

Float

0~255

Float

0~255
Float String

CParm1

(HSL)
Float Float Float

Int

0,1,2,3
Float

Float

0~360

Float

0~360
Float String

CParm2

CParm3

(HSL)

Float Float Float
Int

0,1,2,3
Float

Float

0~100

Float

0~100
Float String

Attributes:

 3 / 11

1. Pitch: The tilt angle of the light, with a rotation range of 0~180 degrees;

2. Yaw: The horizontal rotation angle of the light, with a rotation range of -180~180 degrees;

3. YawAlt: The custom plane rotation angle of the light, with a rotation range of -90~90

degrees. This means that after determining a plane through the Pitch and Yaw attributes

(Note 1: the plane determined by the light direction and the rotation axis of Pitch), the light

is rotated in this plane. It should be noted that the YawAlt attribute only takes effect after

the Pitch and Yaw movements have ended.

4. Switch: The on/off status of the light;

5. Intensity: Brightness, with a value range of 0~3;

6. Angle: Light cone angle, with a value range of 0~50;

7. Radius: Size of the light ball entity, with a value range of 0~0.1;

8. FadeEnd: Light cone fade-out distance, with a value range of 0~60;

9. Color: Light color, defaulting to RGB, with R (red), G (green), and B (blue) value ranges of

0~255; it can also support HSL color, by adding a "type" parameter under the Color attribute

and setting its value to "HSL". The value ranges of the variables are H (hue) 0~360, S

(saturation) 0~100, L (lightness) 0~100;

10. Color separation mode: As the name suggests, color separation mode is to split the color

of a group of lights into three independent attributes and control them separately. For

example, in RGB mode, the color is split into three independent attributes: R (red), G (green),

and B (blue), corresponding to CParm1, CParm2, and CParm3; in HSL mode, the color is split

into three independent attributes: H (hue), S (saturation), and L (lightness), also

corresponding to CParm1, CParm2, and CParm3. Each independent attribute can be set with

 4 / 11

different change speeds, loop modes, wait times, warm-up and cool-down times, etc., thus

achieving more colorful color changes through combinations of the three independent

attributes. The setting method is to describe the CParm1, CParm2, and CParm3 attributes

separately in the configuration text instead of describing the Color attribute.

Note 1: The rotation result of Yaw determines the rotation axis of Pitch, and the rotation result of Pitch

determines the light direction perpendicular to the rotation axis. These two lines determine a plane. The role

of the YawAlt attribute is to rotate the model light on the aforementioned plane without always maintaining

perpendicularity to the rotation axis of Pitch.

Parameters:

1. delay: Delay time, which is how many seconds to wait before starting to process;

2. duration: Duration, which is how much time it takes for the relevant attribute value to

gradually change from the start value (sVal) to the end value (eVal). This parameter is invalid

for the Switch attribute;

3. speed: Change speed, which is how much the relevant attribute changes per second. This

parameter is only effective when "duration" is "-1" and is invalid for the Switch attribute;

4. mode: Action mode. "0" for single execution (A2B); "1" for repeated execution (A2B, A2B,

A2B...); "2" for single forward and reverse (A2B, B2A); "3" for repeated forward and reverse

(A2B, B2A, A2B...);

5. WU: Warm-up time, which is how many seconds to wait after the relevant attribute is

assigned the start value (sVal) before starting to change. Warm-up time is part of the action

and will be included in various action modes;

6. sVal: Start value. Users can specify the start value for relevant attributes or use the current

 5 / 11

value of the attribute by setting sVal to "999" (this setting also applies to the Color attribute,

i.e., set to "999,999,999");

7. eVal: End value. For the Switch attribute, if eVal is a negative integer, it means that the on/off

status of the light is obtained randomly according to a certain probability. If eVal is "-1", the

probability of the light being on is 10%, and if eVal is "-2", the probability is 20%, and so on;

8. CD: Cooldown time, and after the related attribute reaches the termination value (eVal), wait

for how many seconds before the action ends. Cooldown time is part of the action and will

be included in various action modes.

9. vuml: External vuml variable, which comes from the "plugin#0_JayJayWon.VUML" plugin on

the "__MainScript" atom, is a floating-point variable (such as "vFLOAT1Result", and the

variable value should be between 0 and 1) or a Boolean variable (such as "vBOOL1Result".

Boolean variables are only applicable to specify Switch properties as on or off). When a

certain attribute specifies a vuml parameter, then the value of that attribute will follow the

specified floating-point variable to change between sVal and eVal. This status is a continuous

state unless there is new instruction input and execution. vuml parameters are also applicable

to Color attributes.

Universal Random Parameter Settings

In addition to the conventional operations on parameters introduced above, it is also possible

to perform universal random settings for the sVal and eVal parameters (except for Switch

attributes). The specific method is to set sVal or eVal to "-9XY". X indicates the starting point of

the parameter value domain (from the smallest to the largest) based on the fraction (10% as a

 6 / 11

block), and Y indicates the size of the random domain, which is equivalent to a certain

percentage of the parameter value domain (also 10% as a block, with 0 indicating 100%). When

entering the action for the first time, the system will randomly generate a value within the

specified range and assign it to sVal or eVal.

Universal Incremental Settings

To facilitate users in setting a parameter (such as delay) of a certain attribute of a group of lights

or a certain light to increase or decrease sequentially (of course, the order can be specified

according to the user's needs), "Magic Light Show" provides a universal incremental function.

This function supports most parameters of all attributes, including delay, duration, speed, WU,

sVal (not applicable to Switch and Color), eVal (not applicable to Switch and Color), CD, and

vuml.

The specific setting is like "delay":"0#0.1", where "#" is the starting quantity before the parameter,

and "#" is the amount of incremental increase after each time. The increment can be negative.

This writing method is applicable to all floating-point parameters. For character-type vuml

parameters, a different writing method is required. Specifically, it is written as

"vuml":"vFLOAT#Result#16". The incremental setting results obtained are in order:

"vFLOAT16Result", "vFLOAT17Result", "vFLOAT18Result", "vFLOAT19Result",

"vFLOAT20Result" ...

Configuration Text

The format of configuration text follows that of JSON, which is relatively concise and easy to

 7 / 11

understand. However, due to the limitations of the development environment, it is difficult to

further optimize. Specifically, it looks like:

Circle|All

Light|All

=

Pitch|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

Yaw|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":0, "WU":0, "CD":0, "vuml":""

YawAlt|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":0, "WU":0, "CD":0, "vuml":""

Switch|"delay":"0#0.1", "duration":0, "speed":0, "mode":1, "sVal":1, "eVal":0, "WU":"24#-0.2", "CD":"0#0.2",

"vuml":""

=

Angle|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":1, "WU":0, "CD":0, "vuml":""

Intensity|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":1, "WU":0, "CD":0, "vuml":""

Radius|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":0.05, "WU":0, "CD":0, "vuml":""

FadeEnd|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":10, "WU":0, "CD":0, "vuml":""

Color|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":"-900,-900,-900", "eVal":"-900,-900,-900", "WU":0,

"CD":0, "vuml":""

In the above example, a series of delay settings were applied to the Switch attribute, and random

settings were applied to the Color attribute.

For another instance：

Circle|0

Light|3,9

Circle|1

Light|4,5,13,14

Circle|2

Light|5,6,7,17,18,19

 8 / 11

Circle|3

Light|6,7,8,9,21,22,23,24

Circle|4

Light|7,8,9,10,11,25,26,27,28,29

=

Pitch|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":90, "WU":0, "CD":0, "vuml":""

Yaw|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

YawAlt|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

Switch|"delay":0, "duration":0, "speed":0, "mode":1, "sVal":1, "eVal":0, "WU":3, "CD":3, "vuml":""

=

Angle|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":20, "eVal":30, "WU":0, "CD":0,

"vuml":"vFLOAT1Result"

Radius|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0.01, "eVal":0.05, "WU":0, "CD":0, "vuml":""

Intensity|"delay":0, "duration":1.5, "speed":0, "mode":3, "sVal":0, "eVal":1, "WU":0, "CD":0, "vuml":""

FadeEnd|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":10, "WU":0, "CD":0, "vuml":""

Color|"delay":0, "duration":0, "speed":0, "mode":0, "type":"HSL", "sVal":"0,0,100", "eVal":"360,100,100", "WU":0,

"CD":0, "vuml":""

The above example demonstrates how to configure different lights in different groups

simultaneously. It can be seen that the configuration flexibility is very high, which gives the user

a broad creative space, but also means a relatively higher understanding difficulty and learning

cost. In addition, to achieve the desired effect, users need to constantly try and optimize in the

creative process. Therefore, it takes a certain threshold to use "Magic Light Show" deeply.

Here is a commonly used initialization configuration for easy copy & paste.

Circle|All

Light|All

=

 9 / 11

Pitch|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

Yaw|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

YawAlt|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

Switch|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":0, "WU":0, "CD":0, "vuml":""

=

Angle|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":10, "WU":0, "CD":0, "vuml":""

Intensity|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":1, "WU":0, "CD":0, "vuml":""

Radius|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":999, "eVal":0.05, "WU":0, "CD":0, "vuml":""

FadeEnd|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":0, "eVal":10, "WU":0, "CD":0, "vuml":""

Color|"delay":0, "duration":0, "speed":0, "mode":0, "sVal":"0,0,0", "eVal":"255,255,255", "WU":0, "CD":0,

"vuml":""

Configuration and Execution

The basic working principle of "Magic Light Show" is to write configuration text, then parse the

configuration data and update object parameters. Then, every frame (physical frame), the

system will operate and maintain the corresponding objects based on the changes in parameters.

Users can operate the "plugin#1_Scripter" plugin of "__MainScript" atom to write configuration

text through any external trigger instruction to the "Config String" variable. Then, users can

execute the "Execute New Action" method of the "plugin#1_Scripter" plugin of "__MainScript"

atom to make the configuration text be parsed and executed at the end of the physical frame.

"Writing configuration" and "execution" are a pair of actions that need to be completed

continuously. Users can continuously perform multiple "write configuration" and "execute"

operations in the same frame to achieve complex operations for different lights and different

attributes.

Configuration is allowed to overwrite. If there are multiple configurations for the same object

 10 / 11

and attribute in the same frame, only the last configuration will be effective. Therefore, a small

trick can be introduced:

After a light completes an action, in order to ensure a clean start for the next action, we will execute a

"ResetAll". However, if we immediately execute the next action in the same frame, there may be cases where

the state cannot be refreshed cleanly. The reason is that in the same frame, one light receives the configuration

information of RestAll after waiting for the execution refresh (really ending). If at this time, subsequent actions

also transmit configuration information to this light, it will overwrite the configuration information transmitted

by RestAll. In most cases, immediately executing subsequent actions will not cause problems. However, if the

subsequent action requires the light to delay first, then the state of the previous action of the light will be

retained. It feels like the state did not refresh cleanly.

Therefore, for insurance purposes, after executing RestAll, it is recommended to wait for a short time before

executing the subsequent action. At least leave one frame's time for RestAll to refresh the light state cleanly.

Detailed Action Execution Process

The execution of each action follows this process:

Start → Wait (delay) → Set initial value (sVal) → Warm-up (WU) → Start value change → Achieve

termination value (eVal) → Cool down (DC) → End

In any action mode, repeated operations and reverse operations of the action do not include

the "Wait (delay)" part. Reverse operation refers to the reverse of all processes except for the

"Wait (delay)" part, not just the "value change" part. Understanding this action process will be

helpful for rational configuring and programming to achieve desired effects.

Advanced Extension

If you want to create your own light group or brand-new stage, in addition to creating the group

 11 / 11

and lights according to the naming rules, you also need to adjust some VAM-Scripter code. Of

course, this is also very simple, just adjust one line of code.

Each number represents the number of lights in the lamp group. I think you understand:-) Don't

forget to click the checked button after changing it.

Of course, there is still a lot of knowledge about lamp group creation itself, which will not be

expanded here. We can discuss it later if we have the opportunity.

